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Abstract

We fabricated Ag nanoparticle (NP) film in organic light emission diodes (OLEDs), and a 23 times increase in
electroluminescence (EL) at 518 nm was probed by time-resolved EL measurement. The luminance and relative
external quantum efficiency (REQE) were increased by 5.4 and 3.7 times, respectively. There comes a new energy
transport way that localized surface plasmons (LSPs) would absorb energy that corresponds to the electron-hole
pair before recombination, promoting the formation of electron-hole pair and exciting local surface plasmon
resonance (LSPR). The extended lifetime of Alq3 indicates the existence of strong interaction between LSPR and
exciton, which decreases the nonradiative decay rate of OLEDs.

Background
Organic light emission diodes (OLEDs) have been widely
used in TV, mobile phone, and lighting source because of
their unique advantages such as flexibility, high brightness,
low power consumption, and wide view [1–3]. Excellent
progress has been achieved in the past few years for im-
proving the quality of OLEDs [4–7]. For example, nearly
100 % of inner quantum efficiency can be obtained using
phosphorescence [8, 9] and delayed fluorescence [10–13]
materials. However, the delayed fluorescence depends heav-
ily on the depositing conditions and the quantum efficiency
is usually much lower than 100 %. Phosphorescence also
has some disadvantages such as lighting impurity, unstabil-
ity, and so on. In order to design OLEDs with better per-
formance, the quantum efficiency of fluorescence needs to
improve by using new technology and theory. There are
many efforts attempted to break the limitation of 25 %
quantum yield, which is due to spin forbidding. Surface
plasmon resonance (SPR) [14–18] and localized surface
plasmon resonance (LSPR) [19–22] associated with metal
film and nanoparticles (NPs) have become the most attract-
ive methods to enhance electroluminescence (EL) of

OLEDs. The enhanced factor for photoluminescence (PL)
can reach to as high as 1010 theoretically.
Many works have been done to improve the quantum

efficiency of electroluminescence (EL) for inorganic
materials, and the EL intensity was enhanced based on
SPR and LSPR [23–25]. EL enhancement based on LSPR
is difficult for OLEDs due to the damage of H+ and O2+

organics in air [26]. OLEDs need to be fabricated in a
high-vacuum system to protect the device from air and
water. Zhang et al. have successfully introduced the Ag
NP film to OLEDs by using periodical drape metal and
achieved considerable enhancement [27]. The enhance-
ment by SPR and LSPR was attributed to the increase of
the radiative decay rate while suppressing the nonradia-
tive decay rate of excitons. However, before the forming
of an exciton, electron-hole pair would relax to metasta-
ble states, which would release much energy. If the en-
ergy is effectively used, the efficiency of OLEDs may be
significantly improved. In addition, because of the
method they used in that work, impurity of the NPs
cannot be avoided. Here, we report a study to deposit
Ag NP film in OLEDs without introducing impurity and
to attempt to make the best use of the energy from the
electron-hole pair and exciton.* Correspondence: phywwang@163.com
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Method
Samples
The OLEDs were fabricated by using organic evaporating
system with the pressure less than 1.0 × 10−4 Pa. To investi-
gate the interaction between Ag NP film and emitting
material, we choose the typical and high-efficiency organic
materials. The organic layers, NPB (N,N′-diphenyl-N,N
′-bis(1-naphthyl)-(1,1′-biphenyl)-4,4-diamine, hole transfer
layer, 40 nm), Alq3 (tris-(8-hydroxylquinolone)aluminum,
emission layer, 30 nm), and PBD (2-(4-tert-butylphe-
nyl)-5-(4-biphenyl)-1,3,4-oxadiazole, electron injection
layer, 3 nm) were deposited on ITO glass. Then, the
Al film was evaporated to the top for cathode.
The organic layers were deposited at a slow rate

(0.06 nm/s) to form a nanostructure. Before the continu-
ous film forming, the cores appear first. Then, the cores
that connect with each other become the integrated film.
When evaporation was slow, the kinetic energy was
smaller than the attraction between two organic mole-
cules. They will be tied together. The connection of
cores would be limited and form the nanostructure.
Then, the Ag film was deposited on the organic layer
with a much slower rate (0.01 nm/s) by laser molecule
beam epitaxy system (L-MBE). Ag atom was small and
slow enough to be attracted by the relatively big organic
molecules. Ag NP film was deposited on electron trans-
fer layer (PBD).
Figure 1 shows the schematically structure of our OLEDs.

The Ag NP film self-assembly formed in the device with
Ag nanopeak embeds the organic layer.

Measurements
Thickness Measurements
The accurately controlling of thickness of each layer is
important to the performance of OLEDs. We use two
methods to determine the thickness of films. Spectroscopic
ellipsometry (M-2000VI J.A. Woollam) and AlphaStepD-
100 were used to join measure thickness. Then, the thick-
ness of the layers is controlled by using a quartz crystal

monitor in the evaporating process. The morphology of
films was presented by using atomic force microscope
(AFM, NT-MDT Prima).

EL and Current Intensity Measurements
The current density-voltage and photon count intensity-
voltage characteristics of the devices were measured by
using a Keithley 2400 (Keithley instruments Inc.) and
FLS920 (Edinburgh Instrument). The absorption spectra
was measured in the wavelength range of 300–900 nm
with a UV-vis spectrophotometer (U-3310 UV-vis HITA-
CHI). The decay kinetics was measured by FLS920. All
measurements were done at room temperature under
ambient air.

Result and Discussion
Figure 2 shows the AFM of films with and without Ag
film. Figure 2a presents the film with uniform nano-
structure peaks by controlling the evaporation rate of
organics. The 3D and 2D images indicate the presence
of sharp nanopeak structures, which are ~40 nm in
height and ~80 nm in diameter. The depositing of Ag
decreased the height of peaks from 40 to 30 nm as
shown in Fig. 2. The space among the nanopeak was
filled by Ag NPs.
Then, we fabricated the OLEDs with different thick-

ness of Ag NPs film. Figure 3 presents the current dens-
ity of the devices with different thickness of Ag NP film.
It shows that current density decreases after the inser-
tion of Ag NP film except the one with 4-nm Ag NPs.
This is because thinner Ag NP film do not form the
integrated film yet, which blocked electron flowing.
After the Ag film increased to 4 nm, the integrated film
was formed. Combining with the Al, it becomes the Ag-
Al complex cathode, which increased the injection of
electron. If we keep increasing the thickness of Ag film,
we can observe strong LSPR in the Ag film with
nanostructure.
The strong LSPR and the gathering of electron can

damage the organic film, leading to the decrease of the
current density.
We then measured the photon intensity of the devices

with different thickness of Ag NP film using single pho-
ton counting technique (FLS920). As showed in Fig. 4,
the photon intensity of the devices increased after insert-
ing the Ag NP film. With the thickness of Ag NP film
increasing, the photon intensity of the devices increased.
The device with 4-nm Ag NP film performed the largest
photon intensity. When the thickness of Ag NP film is
thicker than 4 nm, the devices could not supply enough
carriers for combination. Furthermore, when the thick-
ness is more than 4 nm, it may damage the devices.
Thus, we chose 4 nm to be the optimal thickness of Ag
NP film in this study.

Fig. 1 The structure of OLED with Ag NP film
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To analyze the effectivity of Ag NP film, the absorp-
tion spectra of multilayer (NPB/Alq3/PBD/Ag) with dif-
ferent thickness of Ag NP film were measured. Figure 5
shows the measured absorption spectra of the devices. It
is clear that the 4-nm Ag NP film shows the highest ab-
sorption at 460 nm.
Figure 6a shows the enhancement of EL with different

thickness of Ag NP films. The inset is the EL spectra of the
devices with and without 4-nm-thick Ag NP film. We can
see that the photon count intensity of EL is much greater
than that without Ag NP films. The enhancement of pho-
ton count intensity increases with the thickness of Ag NP
film. There is a significant increase when the thickness of
Ag NP film is increased from 3 to 4 nm. The photon count
intensity of the device can reach to 23 times than that of
the device without Ag NP film. Figure 6b is the enhance-
ment factor of luminance and relative external quantum
efficiency (REQE) of the devices with different thickness of
Ag NP films. As shown in the figure, when the thickness of
Ag NP films increases, the enhancement factor increased

until it reaches a maximum and then it decreases. The
optimum luminance is obtained by the 4-nm Ag NP film;
the maximum enhancement factor is about 5.4. The en-
hancement curve of REQE shows the same tendency with
the enhancement of luminance. The highest REQE is
obtained by the 2-nm Ag NP film. Combining the enhance-
ment of luminance and REQE, we choose 4 nm as the opti-
mal thickness of Ag NP film, whose REQE is about four
times more than that of the device without Ag NP film.
We measured the absorption of Ag NP film. Figure 7

is the absorption spectrum of Ag NP film. The inset is
EL spectrum of Alq3 (emission peak is 518 nm).
Figure 7 presents that the absorption peaks of Ag NP

are 373 and 443 nm. There is a strong LSPR area from
340 to 536 nm (we call it the action area). What surprised
us was that the action area overlaps not only the emission
frequency but also the electron-hole pair energy. As we
know, electron-hole pair energy (energy gap between
lowest unoccupied molecular orbital (LUMO) and highest
occupied molecular orbital (HOMO)) of Alq3 is 2.7 eV

Fig. 2 The AFM image of organic layer before (a) and after (b) deposition Ag

Fig. 3 The current density of devices with different thickness of Ag
NP film

Fig. 4 The photon intensity of devices with different thickness of Ag
NP film
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(460 nm). The energy of electron-hole pair close to the
resonance peak of Ag NP film induced new energy coup-
ling ways and excited LSPR. When the OLEDs device is
excited, electron and hole form electron-hole pair at first.
The electron-hole pair is unstable. It releases energy by
nonradiative relaxation and becomes an exciton (Fig. 8a).
At the same time, the excited localized surface plasmons
(LSPs) would transfer the energy to the exciton for light
emission. Any change would break the balance (Fig. 8b).
In Fig. 7, we can see that LSPR area covers the energy

of electron-hole pair. So once the pair forms, it would
excite LSPs and resonance with it. The electron-hole
pair would decrease, which breaks the balance. The for-
mation of electron-hole pair would be promoted and
the exciton number would increase. When the Ag NP
is inserted into the OLEDs, the value of electron and
hole increases.
Figure 9 presents the interaction of electron-hole pair,

exciton, and LSPs. The electron-hole pair releases energy,

which excites LSPs. They become an exciton (metastable
state). Then, the exciton would release energy through ra-
diative and nonradiative channels. Because the absorption
spectra of Ag NP film also overlap with the emission light
(emission peak is at 518 nm), there would be a strong
interaction between the exciton and LSPR.
As we know, the lifetime for a free emission of an

excited fluorophore can be expressed as

τ0 ¼ 1
ΓRE þ ΓNRE

ð1Þ

where ΓRE is the radiative decay rate and ΓNRE is the
nonradiative decay rate. The introduction of Ag NP film
would affect ΓRE and ΓNRE by inducing the additional
energy transfer channel. Thus, the lifetime of fluoro-
phore should be [17]

Fig. 5 The absorption of devices with different thickness of Ag
NP film

Fig. 6 The enhancement of EL (a), luminance (b), and REQE (b) of devices

Fig. 7 The absorption spectrum of Ag NP film
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τ0 ¼ 1

Γ ′
RE þ Γ ′

NRE

ð2Þ

To further investigate the relaxation of energy from the
electron-hole pair, the PL decay of the device was mea-
sured. The decay kinetics of 518 nm for the samples with
and without Ag NP film was analyzed. The kinetics (ex-
cited at 405 nm) was displayed in Fig. 10. The decay curve
was fitted well by a biexponential function: kexp(−t/τ1)
+ (1−k) exp(−t/τ2). Table 1 presents the fitted parameters
of samples, NPB/Alq3/PBD and NPB/Alq3/PBD/Ag.
We can see that the lifetime of Alq3 increased because

of the insertion of Ag NP film.
The Γ′RE increases due to the enhancement of lumi-

nescence. According to Eq. (2), we can deduce that the
nonradiative decay rate Γ′NRE decreases; moreover, the
decreasing extent of the nonradiative decay rate is
greater than the increasing extent of the radiative decay
rate. Thus, the insertion of Ag NP film can suppress the
nonradiative energy loss. The decrease of nonradiative
decay rate reveals that the electron-hole pair transfers
the energy to Ag films, which boosts the forming of

electron-hole pair and the efficiency of OLED is
increased.
The internal quantum efficiency (ΓIQE) from the device

is given by radiative decay rate (ΓRE) and nonradiative
decay rate (ΓNRE):

Γ IQE ¼ ΓRE
ΓRE þ ΓNRE

ð3Þ

The ΓIQE would be affected because of the interaction
with LSPs [18, 19]

Γ′IQE ¼ Γ′RE
Γ′RE þ Γ′NRE

ð4Þ

Equation (2) presents that the (Γ′RE + Γ′NRE) decreased
and the Γ′RE increased. It suggests that the Γ′IQE as in
Eq. (4) should be increased.

Conclusions
In summary, we have demonstrated the enhancement
of OLEDs by inserting the Ag NP film. The enhance-
ment of photon count intensity can reach to 23 times
than that of the device without Ag NP film, and the

Fig. 8 The electron-hole release energy (a) and would be balance (b)

Fig. 9 The interaction of electron-hole pair, exciton, and LSPs Fig. 10 The PL decay kinetics of Alq3 with and without Ag NP film
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maximum enhancement factor is about 5.4 when the
Ag NP film is 4 nm. With inserting the Ag NPs, the
energy would transfer to the LSPs from the electron-
hole pair, which promoted the formation of electron-
hole pair and excited LSPR. On the other hand, the
emission peak also lays in the action area, where
there would be a strong interaction between the ex-
citon and LSPR. The lifetime measurement shows
that Ag NPs increase the lifetime of Alq3, which indi-
cates that the LSPR suppresses the nonradiative decay
rate.
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